
Username/Email: Password: Login Register | Forgot your password?

Like Rodrigo Zuolo Carvalho likes this.

 (/issue/6)

From Issue #6
October 1994 (/issue/6)

Linux Programing Hints

Oct 01, 1994 By Michael K. Johnson (/user
/1000867)

 in

Most Linux users have at least heard of Makefiles,
but many do not know how powerful a program
make is. It is thought of as a tool for maintaining
other programs, but it is far more. It can make sense
out of chaos in any project where some files are
created from other files, whether the end product is
a program or a book or an automated post to
Usenet. Even if you have never written a makefile, th

An Introduction to make

Most Linux users have at least heard of Makefiles,
but many do not know how powerful a program make
is. It is thought of as a tool for maintaining other
programs, but it is far more. It can make sense out of chaos in any project where
some files are created from other files, whether the end product is a program or a
book or an automated post to Usenet. Even if you have never written a makefile, this
tutorial will set you on your way to using make effectively.

by Michael K. Johnson

Many people are confused by make: maybe you are too. You know that it is hard to
use, because it has a weird syntax unlike any other program you use. If you are lucky,
you have been warned that it is important to have tab characters (not spaces) in
certain places, and you know that if you mess up a makefile you won't be able to fix
it.

Writing a makefile of your own is out of the question. It is difficult, and besides, you
aren't really a programmer, anyway. What could this programmer's maintenance
program do for you, and why should you learn its weird syntax? Or maybe you are a
programmer, and you don't want to learn this tool called make, which has a syntax
different from any language you have ever learned.

The reason for the weird syntax is that make does a job very different from normal
programming tools, and it is well-suited to that very different job. Understanding the
job is the first step to understanding make. Once you understand the job, and have
learned a little bit about make, you will be able to write short, powerful makefiles.

We will pretend for the moment that you are writing a book, although the exact same
ideas apply to writing a program. (I just want to emphasize that make isn't just for
Real Programmers.) You are using LaTeX. Each chapter has several figures. These
figures are done in xfig, and need to be converted to PostScript format with fig2dev
before being included in your book.

Here comes the problem. You are occasionally editing the figures with xfig, and
forgetting to make a PostScript copy of each figure when you are done, so you write a
large shell script that converts xfig to encapsulated PostScript (EPS) for each figure.
It is large, bulky, and inflexible, but you get the job done right each time you print.
Unfortunately, it takes a while to convert all the files from xfig to encapsulated
PostScript. Even if you have only made a minor change in one figure, it re-converts
all of your figures. This is annoying, and takes a while for it to convert your 80 or so
figures.

Welcome to the wonderful world of make

Linux Programing Hints | Linux Journal http://www.linuxjournal.com/article/2839?page=0,0

1 of 3 05/03/2011 02:42 PM

The intelligence of make is summarized by two concepts: dependencies and rules.
You need to tell make that the dvi file (we'll call it book.dvi) needs to be created from
the main LaTeX file (book.tex), and from the encapsulated PostScript files (*.eps). In
make terminology, book.dvi depends on book.tex and *.eps. Also, each of the .eps files
depends on the corresponding .fig file. You also need to give make rules for turning
book.tex into book.dvi, and for turning the .fig files into .eps files.

Newbie Note:All lines containing shell commands in your makefile must start with
the TAB character.

Here is an example of a makefile that will do everything that is necessary:

0: # This is a makefile to create book.dvi

1: EPSFIGS = fig1.eps fig2.eps fig3.eps fig4.eps \

2: fig5.eps fig6.eps fig7.eps fig8.eps fig9.eps \

3: <... more .eps files, too many to print ...> \

4: fig78.eps fig79.eps fig80.eps fig81.eps

5:

6: book.dvi: book.tex $(EPSFIGS)

7: latex book.tex

8:

9: fig1.eps: fig1.fig

10: fig2dev -Lps fig1.fig fig1.eps

11:

12: fig2.eps: fig2.fig

13: fig2dev -Lps fig2.fig fig1.eps

14:

<many more similar rules that you can imagine>

220:

This file can be saved as makefile or Makefile; either will work. If you have both
files in the same directory, makefile will be used instead of Makefile. In addition,
there are other names that can be used and rules to control that. See the GNU Make
manual if you care (you usually won't). People almost always use Makefile because
capital letters show up at the top of directory listings.

The first line, line 0, is a comment. Line 1 starts to define the variable EPSFIGS. The
backslashes continue the line, so the EPSFIGS variable contains the names of all the
EPS files from fig1.eps through fig81.eps, and logically all those lines are really one
long line. Line 6 tells make that if book.tex or any of the .eps files are newer than
book.dvi, then book.dvi has to be recreated. Line 7 explains how to do this. It is very
important that this line start with a TAB character. This is how make knows that this
is a shell command to be executed to update the dependency that preceeds it. Eight
spaces will not work. Spaces can follow a tab, but the first character on that line must
be a TAB. The rest of the lines work the same way: line 9 says that fig1.eps depends
on fig1.fig, and line 10 tells make how to update fig1.eps from fig1.fig if fig1.fig has
been updated since the last time fig1.eps was created.

Simply typing make will automatically make book.dvi, because the first target in the
makefile (here consisting of lines 6 and 7) is the default target. You could
conceivably type "make fig1.eps" to just update fig1.eps from fig1.fig, and that only
if necessary. If it is not necessary, make will tell you "fig1.eps is up to date."

The basic syntax of a makefile can be simplified to this:

Any line can be continued onto the next line by making the last character of the
line be a backslash character.

Variables are defined with lines containing an equal sign: FOO=bar.

Variables are referenced by enclosing them in parentheses (or curly braces, but
parentheses are preferred and are more portable) and prepending a dollar
sign: $(FOO) (or ${FOO}).

Files are made to depend on others by putting the file that is created before a
colon, and a list of files needed to create or update that file after the colon, on

Linux Programing Hints | Linux Journal http://www.linuxjournal.com/article/2839?page=0,0

2 of 3 05/03/2011 02:42 PM

the same line.

A list of shell commands for creating or updating the file follows that line
directly on lines with a TAB character as the very first character. Each line is
run by a separate invocation of the shell, so a cd command on one line will only
have effect on that line. To make successive lines be part of the same shell
invocation, append “ ;\” to the line to make the next line really be another part
of the same line.

Comments begin with the “#” character.

Knowing those six very simple rules will allow you to maintain most makefiles that
you will find on the Internet, and will allow you to create almost any makefile you
need. However--

Linux Programing Hints | Linux Journal http://www.linuxjournal.com/article/2839?page=0,0

3 of 3 05/03/2011 02:42 PM

