signaltest: Using the RT priorities

Arnaldo Carvalho de Melo
Red Hat Inc.

acme@redhat.com

Abstract

This howto will describe a tool used to measure
the latency of a simple message passing mecha-
nism, pthread signals. Step by step concepts of
real time scheduling will be introduced. Tools
for changing and showing the priorities of run-
ning threads will also be presented.

1 Introduction

The signaltest utility was written by
Thomas Gleixner to measure the latencies in-
volved in a simple message passing mecha-
nism, pthread signals. We will study its main
characteristics, introducing aspects of real-time
scheduling priorities. Tools for changing the
priorities of running threads and to show its pri-
orities will also be presented.

2 Scheduling Policies

In the Linux kernel, there are several schedul-
ing policies. The default time-sharing policy
is called SCHED_OTHER and is used by most
processes. Real-time processes usually use the
SCHED_FIFO policy, which runs processes
until they voluntarily schedule or a higher pri-
ority process preempts them. This HOWTO

will focus on these two policies, however the
techniques described are applicable to other
available scheduling policies, such as SCHED__
RR and SCHED_BATCH.

Threads start with the scheduling policy and
priority of its parent. Within a program, a
thread may change it’s priority and schedul-
ing policy with the sched_setscheduler
syscall.

Programs can have their priority and schedul-
ing policy changed at run time with a tool called
chrt. chrt can change the priority and pol-
icy of a running program, as well as to start a
program off with a set priority and policy.

The following example effectively grabs one
CPU by running the ye s tool with the SCHED__
F IFO scheduling policy with real-time priority
99, the highest priority available. CAUTION:
The program yes runs an infinite loop, so only
run this on a system with more than one CPU,
otherwise, it will starve out the only CPU you
have, and effectively lock up the system.

chrt 99 yes > /dev/null

Leave this process running so that we can intro-
duce another tool, ps, that is familiar to most
Linux system administrators. This tool can be
used to show the real-time priority of the run-
ning processes if used as shown here:

ps —C yes —To pid,rtprio, cmd

3860
#

99 yes

If we run yes directly from the shell, not using
chrt the results are:

ps —C yes —To pid, rtprio, cmd
3901
#

— yes

The dash means that the process is not using a
real-time scheduling policy.

To change the priority of a running process with
pid 3901 to real-time, with a value of 85:

chrt —p 85 3901
#

that results in:

ps —p 3901 —To pid,rtprio,cmd
3901
#

85 yes

These are the basics of priorities, scheduling
policies, and how these knobs can be changed,
programmatically and from the command line.

3 signaltest

The signaltest utility has several com-
mand line options. In this HOWTO we will
use the defaults most of the time, introducing
some of the command line options only when
needed.

By default two threads will be created. These
threads will continuously wait for a signal from
the other thread, immediately sending a signal
back and restarting the loop. At each loop a
measurement of the signal delivery latency is
done and statistics about the measurements are
printed.

Before entering the signal sending loop the
threads will change the scheduler policy they
use. By default the scheduling policy used
will be SCHED_OTHER and the priority will be
zero. This can be changed using the ——prio
option, that will make the threads use the
SCHED_FIFO real-time scheduling policy.

To understand how the scheduling policy and
priority affects thread behavior, we must set up
a test environment where there is competition
for the system resources. Some sort of test load
needs to be run to be a determinism disturbance
generator or DDG. A DDG commonly used by
kernel developers is to start a build of the ker-
nel using the parallel make feature to run many
simultaneous compiles. To do this we need the
kernel sources in some directory. They may be
obtained with the following command:

$ wget http://www.kernel.org/pub/linux/kernel/v2.6/linux-

2.6.21.1.tar.bz2
and then set up with:

$ tar xf linux—2.6.21.1.tar.bz2
S cd linux—2.6.21.1
S

This is not needed if you already have some
version of the sources in your test machine.
Once you are in the kernel sources directory
create a separate build directory:

$ mkdir /tmp/kbuild
$

then, in the next examples, when asked to turn
on the DDG, run the following commands:

$ make O=/tmp/kbuild mrproper
$ make O=/tmp/kbuild allmodconfig
$ make O=/tmp/kbuild —j64

Change 64 for a reasonable value in your ma-
chine, as the load can make it difficult for you
to invoke commands on a non real-time shell.

Now run signaltest without any command
line parameters:

signaltest
0.43 0.10 0.37 2/175 8003

T: O
Act:

(8000) P: 0 C: 20080 Min: 5
6 Avg: 6 Max: 77

The first line represents the load of the ma-
chine, it is the content of the /proc/loadavg file.
The number after Max: is the maximum sig-
nal sending latency experienced so far, 77 mi-
croseconds.

In the above example the DDG was not running,
lets do it now and see how a few minutes of ac-
tivity will affect the machine load average (the
first line) and the maximum latency (the num-
ber after Max:):

signaltest
198.74 78.00 31.75 88/1389 1094

T: O
Act:

(19557) P:
7 Max:

0 C: 373280 Min: 5

6 Avg: 89557

The DDG made the load go to 198, and be-
cause of that, the SCHED_ OTHER schedul-
ing can not provide good determinism to the
signaltest threads, making them experi-
ence signal sending latencies as high as 89 mil-
liseconds.

Looking at the priorities of the signaltest
threads:

ps —C signaltest —To
pid, tid, rtprio, cmd
23039 23039 — signaltest
23039 23097 — signaltest
23039 23098 — signaltest
#

we can see that the third column, rtprio, has
a dash for all the three threads, meaning that
they are not using a real-time scheduling policy.

Now using chrt toset signaltest priority:

chrt 99 signaltest
176.52 151.10 100.69 318/1459
29348

T: O
Act:

(27421) P: 0 C:
22 Max:

20336 Min: 5

6 Avg: 60002

At first glance it does not seem to help, as the
maximum latency is too high at 60ms.

Looking at the priorities for the signaltest
threads we see the problem:

ps —C signaltest —To
pid, tid, rtprio, cmd

6147 6147 99 signaltest
6147 6178 — signaltest
6147 6179 — signaltest

#

The main thread, initiated by chrt is indeed
real-time and has the specified priority, 99, but
the signal sending threads are not real-time.
This is so because signaltest sets the pri-
ority according to the ——prio command line
option.

It is also possible to change the scheduling pol-
icy and priority of individual threads. Using the
above threads as an example we can do this:

chrt —p 98 6178

changing the priority of the first thread, that has
a thread id (tid) equal to 6178, to 98:

ps —C signaltest —To
pid, tid, rtprio, cmd

6147 6147 99 signaltest
6147 6178 98 signaltest
6147 6179 — signaltest

But to get the maximum latency when using
signaltest with areal-time scheduling pol-
icy we must restart it using the ——pzrio (or —p)
command line option:

signaltest ——prio 99
26.05 95.89 130.80 1/1355 26979

T: 0 (26963) P:99 C: 20352 Min: 5
Act: 5 Avg: 9 Max: 43

looking at the priorities now shows a different
picture:

ps —C signaltest —To

pid,tid, rtprio, cmd

995 995 — signaltest ——prio 99
995 996 99 signaltest ——prio 99
995 997 99 signaltest ——prio 99
#

Only the signal sending threads now use a real-
time scheduling policy.

Using a real-time scheduling policy and the
maximum priority, 99, even with the DDG us-
ing most of the machine resources we get:

signaltest ——prio 99
262.72 181.79 157.44 1/1197 27589

T: 0 (26996) P:99 C: 348208 Min: 5
Act: 13 Avg: 9 Max: 59

the worst latency was 59 microseconds, even
with a load of 262!

